Creating and Engaging at WCSE 2015 – Mary Power

Capture

A week ago I attended the Western Conference on Science Education – WCSE 2015, held at Western University in London, Ontario. This biennial conference brings together people passionate about STEM education from across Canada, and beyond, for three days of learning, community and fun. I have attended all three of these WCSE conferences (the first being in 2011) and I must say this has become THE conference I look forward to. What is it about WCSE that I find so rewarding? In reality it is the whole package. It is the perfect sized conference, my guess is about 150 attendees, which is large enough to have a variety of quality presentations and posters and a diversity of participants, yet small enough to generate a community. The organizers, Tom Haffie and Ken Meadows in particular, do a marvelous job of creating a welcoming and engaging atmosphere. Having reflected on my experience at WCSE this year, and in comparing notes with other UWaterloo attendees, I’d like to share a couple key take-aways.

In her keynote talk, Dr. Kimberly Tanner from San Francisco State engaged us in a superhero card sorting activity. This low tech activity very clearly demonstrated the difference between superhero novices and experts. I was a utter novice and grouped my superheroes base on external physical features eg., wearing of capes. I didn’t have a clue as to which were Avengers or Justice League, nor frankly was I aware that those were potential groupings. Dr Tanner and her colleagues have found that it is very similar novice intuitive thinking that can result in common misconceptions of basic biological principles (Coley & Tanner, 2015). As we think about trying to address our student’s misconceptions it is valuable to remember that “… the presence of misconceptions does not indicate deficits but rather a mind actively engaged with the world trying to construct explanations for complex phenomena” (Coley & Tanner, 2015). If we can help students identify where their intuition is not based on how we understand biological processes, for example, and guide them to develop their foundation knowledge we can help them on the path toward expert thinking. Engaging students in thinking about what they know going into a lesson, what they are confused about during the lesson and what they have learned after the lesson contribute greatly to deeper learning and understanding.

Another presentation that especially stood out for me was Simon Bates’ talk “Faculty and Students as collaborators, co-creators and makers”. He talked about his work engaging students in the creation of learning objects to explain physics concepts. In his introductory physics class students generate materials (such as a video, a module, a practice exam question) to explain a concept that is troublesome to them. These are vetted by TAs and subsequently shared with the entire class. Once again, we see students actively engaged in their learning and creating materials to teach their fellow students.

Active participation of students in the education process was a common thread throughout the conference. A large number of undergraduate students participated fully in the conference, both presenting and attending the sessions. Their voices and thoughts were invariably heard in each session I was at. This involvement of the students as complete partners was one of the things that made this conference special for me.

Perhaps the growth of our universities and the resultant large classes has made it feel that it is key to break down the anonymous “us and them” that so often exists in order to find a “we” so that can embark on the learning journey together. This conference with the theme Gather + Create + Improve, highlighted the work of educators trying to actively involve their students in the making of their knowledge, went a long way in the direction of that “we”, I can’t wait for 2017! In the meantime, how do you engage your students as knowledge creators in your classes?

Intuitive Thinking and Misconceptions. Coley & Tanner. CBE – Life Sciences Education (2015). 14:1-19.